1st GCC International Conference on Industrial Engineering and Operations Management

ARIMA-GARCH Model for Estimation of Value-at-Risk and Expected shortfall Some of Stocks in Indonesian Capital Market

0 Paper Citations
1 Views
1 Downloads
Track: Financial Engineering
Abstract

In stock investments, keep in mind the movements and risk of losses that may occur from investments made. One way to calculate risk is to use Value-at-Risk and Expected Shortfall. The purpose of this research is to determine the amount Value-at-Risk and Expected Shortfall of selected stocks using the time series model approach. The data used in this study is the daily closing price of some stocks for three years. In the time series modeling process, the models used for predicting stock movements are Autregressive Integrated Moving Average (ARIMA) for the mean model, and Generalized Autoregressive Conditional Heteroscedasticty (GARCH) for the volatility model. The values of mean and variance obtained from the model are then used to calculate the Value-at-Risk and Expected Shortfall of each preferred stock. Based on the analysis, it was found that from the selected stocks, Bank Mandiri stocks had the lowest risk level and Mustika Ratu stocks had the highest risk level with the Value-at-Risk value of stocks generally smaller than the Expected Shortfall value.

Published in: 1st GCC International Conference on Industrial Engineering and Operations Management, Riyadh, Saudi Arabia

Publisher: IEOM Society International
Date of Conference: November 26-28, 2019

ISBN: 978-1-5323-5951-4
ISSN/E-ISSN: 2169-8767