Track: Healthcare Systems
Abstract
Motivated by the biological metamorphosis process and the need to solve multi-objective optimization problems with conflicting and fuzzy goals and constraints, this paper proposes a simulated metamorphosis algorithm, based on the concepts of biological evolution in insects, such as moths, butterflies, and beetles. By mimicing the hormone controlled evolution process the algorithm works on a single candidate solution, going through initialization, iterative growth loop, and finally maturation loop. The method provides a practical approach to optimizing multi-objective problems with fuzzy conflicting goals and constraints. The approach is applied to the nurse scheduling problem. Equipped with the facility to incorporate the user’s choices and wishes, the algorithm offers an interactive approach that can accommodate the decision maker’s expert intuition and experience, which is otherwise impossible with other optimization algorithms. By using hormonal guidance and unique operators, the algorithm works on a single candidate solution, and efficiently evolves it to a near-optimal solution. Computational experiments show that the algorithm is competitive.